大家好,电商数据分析相信很多的网友都不是很明白,包括网店数据分析报告也是一样,不过没有关系,接下来就来为大家分享关于电商数据分析和网店数据分析报告的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!
本文目录
一、电商数据分析常用方法有哪些
横向对比:简单的说就是和谁对比?假如说我们上个月店铺的成交额增长了30%,那么我们是不是应该开心呢?
这里我们还要参考竞争对手的成交额,数据时代,我们可以很轻易的拿到竞争对手的相关数据。
纵向对比:我们可以把近15天的成交额以线条的形式显示出来,这样就可以很清楚的看到近期的成交额是否达到预期,有没有下降趋势,当然我们也可以以季度、月或周为单位。
这里牵涉到一个问题,评判一家电商企业需要用到的一些日常统计指标:
店铺的目标用户数量:一家店铺的成交量,反映的是这家店铺对于市场的影响以及用户对于产品的满意度。
平均消费金额:店铺每年平均每位用户消费了多少,以此来定位目标人群,确定是否达到盈利的指标。
用户的复购率:判别产品满意度,假如用户购买过一次后,还会购买第二次,说明用户对于你的产品还是很满意的,这样既节省了市场推广费用,用户也会推荐给更多朋友来够买。
我们通过活动等形式把用户引流到我们的流量池里,但是经过一段时间后,用户可能就会慢慢的流失了。那些留下来或者经常访问我们店铺的用户称之为留存。
我们常常用到的日活跃用户量、月活跃用户量、季度活跃用户量,来检测我们店铺的流量。有的时候可能会看到我们的日活,在一段时期内都是逐渐增加的,以为是非常好的现象,但是假如没有做留存分析的话,这个结果很可能是一个错误的。
留存是产品的核心,用户只有留下来,我们的产品才能不断增长。假设我们什么都不做的话,用户很快的就流失了。
大部分电商公司会频繁搞促销,一般来说每次打的旗帜无非是全网最低,但是如何才能确定是全网最低呢?
这时候需要我们去搭建一个比价系统,这个比价系统的目的主要是为了去抓取各大电商平台商品的价格。通过各大电商平台的价格以及优惠额,来制定你自己的策略。
关于电商数据分析常用方法有哪些,青藤小编就和您分享到这里了。假设你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。假设您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
二、电商数据分析的基本流程
1.明确分析目标:首先需要明确分析的目标,例如提高销售额、改善用户体验等。
2.数据采集:收集与目标相关的数据,这些数据包括网站流量、订单数据、用户行为数据等等。
3.数据清洗:对采集到的数据进行清洗、筛选,保证数据的准确性和完整性。
4.数据处理:对数据进行处理和分析,例如数据统计、数据建模、数据挖掘等等。
5.数据可视化:通过图表、报表等形式,将处理后的数据呈现出来,更好地理解和分析数据。
6.数据解读:对分析结果进行解读和总结,发现数据背后的规律和趋势。
7.制定行动计划:根据分析结果,制定相应的行动计划,例如优化网站、改善用户体验、优化产品等等。
8.实施和监控:实施行动计划,并定期监控分析结果,不断进行优化和调整,以达到分析目标。
以上是电商数据分析的基本流程,其中需要注意的是,在整个流程中需要保证数据的准确性和可靠性,并结合业务实际情况,灵活调整分析方法和策略。
三、电商数据分析是什么
电商数据分析包括了大行业大平台的数据状况,也可以是小到店铺、单品、sku的某个某个维度详细数据分析。
除了常规的商品型号、商品价格、促销信息、店铺名称等,还可以自定义其他维度、可以说说是做到了全方位展现渠道违规行为,满足多样化的巡检场景需求。
从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
用户画像即用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。
对电商卖家来说,分析“访客数”最重要的是分析“流量来源”。分析不同流量来源的“数量”和“支付转化率”,找出“支付转化率”比较高的流量来源并想办法提高,不仅可以提高“访客数”还可以提高整体的“支付转化率”。
这时利用数据分析工具能为不同渠道的表现提供总览,并给出目标转化率。当涉及到有机搜索时,分析一些像搜索量和关键词排名的指标能帮你获得更多的见解,比如该将广告预算花在哪儿,如何让用户更容易搜索到你等等。
当用户来到店铺时,我们就要想办法将他们转化成顾客,但众所周知,并不是每个来店里的用户都会点加入购物车按钮。甚至在加入购物车后,也会有改变主意离开网站的可能。所以这一步我们可以用下面的电商转化指标来跟踪和优化线上购物体验:
1、销售转化率——已购买的用户和全部来到店铺的用户比值。
2、平均订单价值——用户下单的平均金额。
3、放弃购物车率——在所有产生的订单中,未完成订单的占比。
对店铺来说,如今流量已进入存量时代,营销渠道分散且复杂,更需要卖家依据数字化营销提高推广的RIO,通过数据分析,加强线上营销的精准,拓展线下新的营销场景,利用数据智能完成全场景全链路的布局,以达到高效转化与品效相结合。
①整体分析:分为两个部分:销售表现和购物行为。销售表现包括各个商品带来的收入,至少购买过一次的用户数,平均订单价格、数量,退款数目等等。购物行为,你可以看到浏览了产品详情页的用户里,加入购物车的人数;或浏览产品详情页后最终下单的人数。
②购物行为分析——我们可以依据更多和商品有关的数据,比如商品浏览页访问量、商品详情页访问量、加入/移出购物车的商品,进入结算阶段的商品,以及购买人数来对用户购物行为进行分析。
我们可以从后台数据分析中找到关于收入,税费、运费、退款金额,和卖出的商品数量。其中,总销售额以金额的形式呈现,是衡量我们线上店铺经营状况最佳的“整体主要指标”(OMM)之一,可以用它来衡量业务的整体增长和发展趋势。
聪明的商家知道忠诚顾客的价值。能够留住用户给你长期带来收入。永远要记住的是,获取新用户比留住老用户成本大得多。研究显示,用户留存率提升5%就能带来25%到95%的利润。
对卖家来说,我们要识别出哪些用户是你的真爱。他们不仅爱你的产品,也愿意向家人和朋友推荐,他们简直是你的品牌大使。成功的电商企业会密切关注着这一阶段的指标并及时做出反应。
四、电商网站数据分析的主要内容
1、网站在运营的过程中,数字化分析是非常有必要的,及时的掌握网站的动态并且根据网站的实际情况做出相应的分析,这个过程是就是电商数据分析的过程。那么,网站数据分析主要都有哪些分析指标呢?一、流量来源分析监控各渠道转化率,针对不同的渠道,做有效地营销,UV代表推广力度,转化率代表效果;转化率的数据让我们很清晰的了解什么样的渠道转化效果好,那么以此类推,同样的营销方式,用在同类的渠道上,效果差不到哪去,广告就可以去开发同类的合作渠道,复制成功经验。二、运营数据总销售额、订单数、客单价、订单转化率、退货率由于用户下单和付款不一定会在同一天完成,这些数据每周汇总,每周数据一定是稳定的。重点指导运营内部的工作,如促销策略、定价策略、产品推广。三、用户分析会员的地区分布、年龄分布、重复购买率。重复购买率提现的是电商的竞争力,绝对是内功。这包括知名度、口碑、客服、包装、发货等每个细节。没有好的重复购买率是没有任何前途的,所以很多大卖家投首页焦点广告,上硬广,就是获取用户第一次购买,从而获得长期的重复购买。否则花钱砸广告,就纯属烧钱行为。四、网站使用率PV/UV、在线时间、跳失率、深度访问率。这是最基本的,每项提高都不容易,需要不断改进每个页面中,每一个发现问题的细节。就拿跳失率来说,高了肯定不是好事,但要知道问题出在哪里。在做活动或者上硬广的时候,跳失率会很高,意味着人群不精准,或者广告诉求和实际内容差距很大,或者本身页面有问题。所以,运营核心工作,一方面就是做外功,提高转化率,获得消费者的第一次购买行为;另外一方面就是做内功,提高重复购买率。
2、以上是小编为大家分享的关于电商网站数据分析的主要内容的相关内容,更多信息可以关注环球青藤分享更多干货
关于电商数据分析的内容到此结束,希望对大家有所帮助。